BHARATIYA VIDYA BHAVAN'S SARDAR PATEL COLLEGE OF ENGINEERING (A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Examination
May 2016
Maximum Marks: 100
Q. P. Code:

Class: S.Y. B. Tech. (Mechanical)
Program: B. Tech. (Mechanical Engineering)
Name of the Course: Mechanical Engineering Measurements
Course Code: BTM404

Instructions:

1. Attempt any five questions.

2. Draw neat diagrams wherever necessary.

Duration: 3 Hrs

Semester: IV
3. Assume suitable data if necessary.

3 (a)	With neat sketches explain the following terms with respect to the measurement system: (i) Accuracy (ii) Hysteresis (iii) Resolution (iv) Span and Range (v) Drift (vi) Dead zone (vii) Precision			07	2	1
(b)	What are "Desired", "Modifying", and "Interfering" inputs for an instrumentation system? Draw block diagram for showing their influence on the output.			08	2	1
(c)	With neat sketch explain working of thermal conductivity gauge			05	3	
4 (a)	Following table) for m table) of the the correspo Measurin Radiation Pirani gau Rotameter Float Gaug Further stud measureme neat sketch.	le list the measuring instr asuring mechanical prope system. Students shall m ding mechanical property. Instruments rometer \qquad \qquad ent shall explain only instrument listed on left	ments (left hand side column of the ties (right hand side column of the tch the measuring instrument with the working principle of the hand side column of the table with	04	3	5,6, 7
(b)	A bubbler or purge method is used to measure the water level. Air compressor having pressure range of $0-5$ bar is used for the measurement of the water level. Air tube with opening at the bottom of the tank is used to purge the air in the water tank. Operator initially purge the 3 bar pressure in the air tube and no air bubbles are observed. The pressure is varied to maximum rating of 5 bar although no air bubble is observed. In fact at the setting of 5 bar pressure the water rises into the air tube up to 5 meters measured from bottom of the tank. Estimate the water level in the tank from the different observations provided.			04	3	7
5 (a)	Following is the calibration data of a pressure transducer:			10	1	2
	q_{i} (Mpa)	$q_{0} \text { (increasing) (Mpa) }$	$\mathrm{q}_{0} \text { (decreasing) (Mpa) }$			
	0	0.25	0.2			
	10	10.56	10.6			
	20	21.65	21.75			
	30	32.21	32.65			
	40	43.75	43.98			
	50	52.3	52.73			
	Find out: (i) The equation for the best-linear fit. (ii) The standard deviation of input q_{i}, output q_{0}, slope and intercept. (ii) q_{i} if the instrument reads $\mathrm{q}_{0}=25.35$ after calibration.					
(b)	A diaphragm pressure gauge is constructed of spring steel to measure differential of $7 \mathrm{MN} / \mathrm{m}^{2}$. The diameter of diaphragm is 12.5 mm . Calculate the thickness of diaphragm, if the maximum deflection is 0.333 of thickness. Also calculate the natural frequency of diaphragm. Given: Young's modulus $=200 \mathrm{GN} / \mathrm{m}^{2}$, Poisson's ratio- 0.28 and density of steel $=7800 \mathrm{~kg} / \mathrm{m}^{3}$			5	3	5
						4

(c)	While measuring speed of a steam turbine with stroboscope single line images were observed for stroboscope setting of 3000,4000 and 5250 rpm Calculate the speed of the turbine.	$\mathbf{5}$	$\mathbf{3}$	
$\mathbf{6 (a)}$	An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter, the pressure difference measured by a mercury oil differential manometer on the two sides of the orifice meter gives a reading of 50 cm mercury. Find the rate of oil of specific gravity 0.9 when the coefficient of discharge of the meter $=0.64$.	$\mathbf{1 0}$	$\mathbf{3}$	$\mathbf{7}$
$\mathbf{6 (b)}$	Draw only self explanatory neat sketches of the following measurement (evices (i) Laser doppler anemometer (ii) Optical pyrometer (iii) LVDT	$\mathbf{1 0}$	$\mathbf{3}$	$\mathbf{6 , 7 ,}$
$\mathbf{7}$	With a neat sketch explain working of (i) Ionization gauge (ii) Hot wire anemometer (iii) Thermocouple (iv) Psychrometer	$\mathbf{2 0}$	$\mathbf{3}$	$\mathbf{5 , 6 , 6}$

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineeri

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Exam
May 2016
Max. Marks: 100 marks
Class: S.Y.B.Tech. Semester: Fourth ($4^{\text {th }}$)
Name of the Course: Mechanical Engineering

Instructions:

1. Question No 1 is compulsory.

2. Attempt any four questions out of remaining six questions.
3. Draw neat schematic diagrams wherever is necessary, highlight important points of answer.
4. Assume suitable data if necessary and mention it.

$\begin{array}{\|c} \text { Q5. } \\ \mathrm{A}) \end{array}$	Enlist different design requirement of tool force dynamometer	4 M	1	
B)	Explain Mechanism of chip formation during machining of Ductile materials with the help of neat schematic sketch? Also give significance of primary deformation and secondary deformation zone with sketch?	5 M	2	
C)	Write short note on tool cutting edge angle (approach angle), its effect on length to diameter ratio of workpiece and relative magnitude of feed force and passive force with necessary sketch? (4M) Draw neat schematic sketch of single point cutting tool to show different parameters of normal rake system (NRS) with proper nomenclature? (2M)	6 M	3	
D)	Write short note on following terms i) Elongation, ii) Yield-point elongation in a sheet-metal specimen with necessary sketch?	5 M	2	
Q6. A)	Write short note on i) Cryogentc machining; ii) Dry (minimum quantity lubrication) machining along with their specific application?	5 M	1	3
B)	Explain Tandem rolling mill, Cluster rolling Mills with the help of neat schematic sketch along with their specific application?	5 M	3	6
C)	i) Sketch and design punch and die size, ii) punch length and die block size iii) Suggest material selection criteria for punch, iv) press capacity? for manufacturing of hard steel washer having outer diameter 25 mm , inner diameter 15 mm , thickness 2.1 mm . Ultimate shear strength of material is $32 \mathrm{~kg} / \mathrm{mm}^{2}$. Assume efficiency of press 65%, shrinkage and expansion allowance 0.055 mm , and clearance for hard steel washer material is 4% of stock thickness. Table 2	10 M	2	5
Q7. A)	Write short note on different type of die buttons and state their specific product application? Along with their necessary schematic sketch?	5 M	2	5
B)	With the help of neat schematic sketch explain in brief spring back, spring back factor, spring back estimation. Draw and explain in brief graph of "spring back factor versus fraction of radius of bend to the thickness of blank"?	5 M	1	7
C)	Design and sketch jig plate, jig bush system and other miscellaneous elements for manufacturing of component shown in figure 2. Draw the assembly view of jig plate, jig bush and workpiece component for performing final drilling operation. State probable accuracy of jig plate surfaces and jig bush surfaces to be maintained (geometric tolerance). Also state sequence of machining process (machine tool used, cutting tool used	10 M	3	

and accuracy maintained in brief)?
Raw material (Mild steel) size $\$ 200 \mathrm{~mm} \times 42 \mathrm{~mm}$, batch size required is 800 nos.

+
O Commer and tap for M8 through. PCDIgo=0.1. Equspaced 6 nos $\quad \pi N 5 \times 10 . P C D 100=0.1$. Eqimspaced 6 nos

$$
T \cdot V
$$

Figure 2.
FIGURE 1. True stress-true strain curves in tension at room temperature for various metals. The curves start at a finite level of stress: The elastic regions have too steep a slope to be shown in this figure, and so each curve starts at the yield stress, Y, of the material.

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering
(A Government Aided Autonomous Institute)
 Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Examination, May 2016

S.Y.B.Tech., Sem-IV

Course: FLUID MECHANICS (BTM 403)

Max. Marks: 100

Instructions:

- Answer any FIVE from seven questions.
- Answers to all sub questions should be grouped together
- Make suitable assumption if needed with proper reasoning
- Figures on right in square bracket shows maximum marks for a particular sub-question.
- Figure on the extreme right shows course outcome number and module number respectively as per the syllabus of the course.

1. (A) 'Boundary layer is a natural feature of a flow.' Discuss it. Explain its significance [12] with illustration?
Derive Non Karmon Momentum Integral equation for flow over flat plate with zero pressure gradients. List salient features of this approach.
(B) Determine the viscous drag torque and power absorbed on one surface of a collar
[08] 1,1 bearing of 0.2 m ID and 0.3 m OD with an oil film thickness of 1 mm and a viscosity of $0.03 \mathrm{Ns} / \mathrm{m}^{2}$ if it rotates at 500 rpm .
2. (A) What is hydrostatic equation? Derive a generalized hydrostatic equation where fluid body is at an uniform accelerated condition. Provide few examples where such condition exists.
(B) Water enters into a two-dimensional, square channel of constant width, $\mathrm{h}=75.5 \mathrm{~mm}$, with uniform velocity, U. The channel makes a 90° bend that distorts the flow to produce the linear velocity profile shown at the exit, with $\mathrm{V}_{\max }=$ $2 \mathrm{~V}_{\mathrm{mm}}$. Evaluate V_{mm}, if $\mathrm{U}=7.5 \mathrm{~m} / \mathrm{s}$. Use Reynolds transport equation with selection of appropriate control volume.
Specify any assumption if made.

3. (A) What is turbulence? Write about its characteristic features. Characterize turbulent velocity profile and explain following terms in this context.
a) Law of wall
b) Universal velocity profile
c) Power law profile
(B) Define metacentre and metacentric height.

State the conditions for the stability of floating bodies. Support your answer with sufficient illustration.
4. (A) What is Hagen Poiseulle flow? Derive an equation for velocity profile using first [10] principle and determine expression for following quantities-
a. Maximum and average velocity,
b. Volume flow rate
c. Wall shear stress
(B) Derive following area-velocity relation for one dimensional compressible flow. [10] Sate the assumption made.

$$
\frac{d A}{A}=\frac{d P}{\rho V^{2}}\left[1-M^{2}\right]=-\frac{d V}{V}\left[1-M^{2}\right]
$$

All variables carries their usual meaning.
Interpret the relation for a CD nozzle.
5. (A) Derive Bernoulli's equation along a streamline starting from N-S equation. Briefly [10] $\quad 2,4$ discuss the conditions for its validity.
(B) Consider the cylindrical weir of diameter 3 m and length 6 m . If the fluid on the left has a specific gravity of 1.6, and on the right has a specific gravity of 0.8 , find the magnitude and direction of the resultant force.

6. (A) What is Mach Number? State its significance in compressible flow analysis?
[10] 1,7 Classify flow based on it. Develop an expression for stagnation temperature as a function of Mach Number.
(B) Assuming linear velocity variation in the boundary layer and using Von Karmon's linear momentum integral equation, determine the thickness of the boundary layer. Also determine the friction coefficient and the displacement and momentum thicknesses.
7. (A) Explain following:
a. Laminar and turbulent flow
b. Developing and developed flow
c. Lift and Drag
d. Major and minor losses
e. Concept of hydraulic diameter.
(B) For a certain incompressible 2D flow field the velocity field in the y direction is [10] 1,3 given by the equation $v=x^{2}+2 x y$. Determine velocity component in the x -direction.

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Exam
May 2016

Max. Marks: 50
Class: SY. B. Tech
Semester: IV
Duration: 02 Hours

Name of the Course: Presentation and communication techniques
Program: Mech/Elect
Course code : BTM406, : BTE232

Instruction: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is for their use.

1) Question No. 1 is compulsory.
2) Out of remaining questions, attempt any 4
3) In all 5 questions to be attempted.
4) Answer to each new question to be started on a fresh page.
5) Figures in brackets on the right hand side indicate full marks.
6) Assume suitable data if necessary.
7) Please write answers to the point. Vague answers will not get marks

Ques sion No		Maximu m Marks	Course Outcome Number	Mod le No.
Q1. A.	Answer any 2 questions out of 4: Describe types of reports briefly with a flow chart.	(10)	$1,2,5$,	$4,6,7$
B.	Explain the difference between a Boss and a Leader.			
C.	What are the advantages and disadvantages of taking telephonic interview.			
D.	What are the principles of writing a Resume'			
Q2	Imagine you are the sales manager of the Mumbai branch of a company that manufactures a soft drink. In the last 3 month, sales in Mumbai have increased only by 3 \% in spite of it being summer. The managing Director at the company headquarters in Pune has asked you to investigate the causes of poor sales and offer recommendations. Write a letter report taking into consideration consumer reactions, advertising and publicity, competition from other companies and cost, health issues	(10)	$1,2,5$	4
Q.3.	Being assertive at a group discussion is good; being aggressive is	(03)	3,4,	07

A.	bad. Comment. Describe the characteristics required by a candidate to emerge as a leader in the discussion.			
B.	Your manager has gone abroad to meet a client, and he has assigned you the responsibility of managing the team for the next two months. He has made the announcement to the entire team. Your manager expects the work in India to go on smoothly, and he needs some support with information while he is on tour. There are some critical deadlines during the two months when he is away. However, your team members refuse to cooperate with you and are taking things lightly. How will you handle the situation and ensure that the deadlines are met?	(05)	2,1	$\begin{array}{\|l} \hline 03, \\ 01 \end{array}$
Q.4.	"Management is doing right things, and leadership is doing the things right". Elaborate the above statement and explain the three styles of leadership along with its advantages and disadvantages.	(10)	$\begin{aligned} & 01, \\ & 03,02,5 \end{aligned}$	06
Q.5.	State whether the following statements are true or false: a. A questionnaire is the most effective method of collecting date b. Feasibility reports give information about the progress of a particular project or scheme c. The book form is preferred for short reports d. The appendix is a list of visual aids and graphics used in the reports e. The length of an abstract is generally 2 to 5% of that of the entire report. f. Teamwork is the concept of people working together cooperatively with diverse goals. g. A resume is your mouth piece written for a prospective employer. h. Some people are born in with good manners. i. A business card should be presented to another person at the beginning of the introduction. J. Procrastination is one of the time waste of time management	(10)	$\begin{aligned} & 1,2,3,4, \\ & 5 . \end{aligned}$	$\begin{aligned} & 1,2,3 \\ & 4,5, \end{aligned}$
Q.6.	Imagine that you are the secretary in attendance at the $7^{\text {th }}$ meeting of the management committee of Bombay department stores held on May $25^{\text {th }}$ 2016. Draft the notice and minutes of this meeting assuming the agenda to be as follows:- a. Confirmation of minutes of the previous meeting b. Appointment of sales women c. Proposal for delivery vans d. Complains regarding the quality of dairy products e. Any other matter with the permission of Chairman f. Date for the next meeting	(10)	1,2	02
Q. 7.	You are required to appear for an interview for the position of management trainee (your preferred specialization) at XYZ Limited. What consideration will you keep in mind before and during the interview?	(10)	4,5	07

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examination

May 2016
Maximum Marks: 100
Class: S.Y.B.Tech
Semester: IV
Name of the Course: Applied Mathematics IV

Duration: $\mathbf{3}$ hour
Program: Mechanical Engineering Course Code : BTM401
Master file.

Instructions:

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.

3 (a)	Calculate the correlation coefficient between x and y from the following data $n=10, \sum x=140, \sum y=150$, $\begin{aligned} & \sum(x-10)^{2}=180, \sum(y-15)^{2}=215 \\ & \sum(x-10)(y-15)=60 \end{aligned}$	6	1	1
(b)	Obtain complex form of Fourier series for $f(x)=e^{2 x}, \quad x \in(-3,3)$	6	2	5
(c)	Let X be a continuous random variable with probability density function $f(x)= \begin{cases}c e^{-3 x}, & x>0 \\ 0 & x \leq 0\end{cases}$ Find (i) c (ii) $P(1 \leq X \leq 2)$ (iii) mean (iv) variance	8	1	2
4 (a)	Obtain Half Range Fourier Cosine Series for the function $f(x)=\left\{\begin{array}{cc} k x, & 0<x<\frac{l}{2} \\ k(l-x), & \frac{l}{2}<x<l \end{array}\right.$	6	2	5
(b)	Two independent samples from normal population with equal variance gave the following results Is the difference between the mean significant?	${ }^{6}$	1	4
(c)	Find the solution of the differential equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$, subject to the conditions. (i) u not infinite for $t \rightarrow \infty$, (ii) $\frac{\partial u}{\partial x}=0$ for $x=0$ and $x=l$, (iii) $u=l x-x^{2}$ for $t=0$, between $x=0$ and $x=l$,	8	3	7

| 5 (a) | The probability that the pen manufactured by a company will
 be defective is $\frac{1}{10}$. If 12 such pens are manufactured, find the
 probability that (i) exactly two will be defective (ii) at least
 two will be defective (iii) none will be defective | | $\mathbf{6}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(c)	From the following data, find the equation of line of regression of y on x and estimate the most probable value of y when $x=$ 9										8	1
		X	3	6	5	4	4	6	7	5		
		Y	3	2	3	5	3	6	6	4		

Appendix C

Areas
under the
Standard
Normal Curve
from 0 to z

z	0	1	2	3	4	5	6	7	8	9
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	. 0359
0.1	. 0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0754
0.2	. 0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	.1064	.1103	.1141
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	. 1480	1517
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	. 1844	1879
0.5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	. 2224
0.6	. 2258	. 2291	. 2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2518	. 2549
0.7	. 2580	. 2612	. 2642	. 2673	. 2704	. 2734	. 2764	. 2794	. 2823	. 2852
0.8	. 2881	. 2910	. 2939	. 2967	. 2996	. 3023	. 3051	. 3078	. 3106	. 3133
0.9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. 3413	. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	. 3621
1.1	. 3643	. 3665	. 3686	. 3708	. 3729	. 3749	. 3770	. 3790	. 3810	. 3830
1.2	. 3849	. 3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	. 4015
1.3	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 4147	. 4162	. 4177
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319
1.5	. 4332	. 4345	. 4357	. 4370	. 4382	. 4394	. 4406	. 4418	. 4429	.4441
1.6	. 4452	. 4463	. 4474	. 4484	. 4495	. 4505	. 4515	. 4525	. 4535	. 4545
1.7	. 4554	. 4564	. 4573	. 4582	. 4591	. 4599	. 4608	. 4616	. 4625	. 4633
1.8	. 4641	. 4649	. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	4706
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. 4744	. 4750	. 4756	. 4761	4767
2.0	. 4772	. 4778	. 4783	. 4788	. 4793	. 4798	. 4803	. 4808	. 4812	.4817
2.1	. 4821	. 4826	. 4830	. 4834	. 4838	. 4842	. 4846	. 4850	. 4854	. 4857
2.2	. 4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 4884	. 4887	. 4890
2.3	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	. 4909	. 4911	.4913	. 4916
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	. 4929	. 4931	. 4932	. 4934	. 4936
2.5	. 4938	. 4940	. 4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952
2.6	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960	. 4961	. 4962	. 4963	. 4964
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970	. 4971	. 4972	. 4973	. 4974
2.8	. 4974	. 4975	. 4976	. 4977	. 4977	. 4978	.4979	. 4979	. 4980	. 4981
2.9	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	. 4986	. 4986
3.0	. 4987	. 4987	. 4987	. 4988	. 4988	. 4989	. 4989	. 4989	. 4990	. 4990
3.1	. 4990	. 4991	. 4991	. 4991	. 4992	. 4992	. 4992	. 4992	. 4993	. 4993
3.2	. 4993	. 4993	. 4994	. 4994	. 4994	. 4994	. 4994	. 4995	. 4995	. 4995
3.3	. 4995	. 4995	. 4995	. 4996	. 4996	. 4996	. 4996	. 4996	. 4996	. 4997
3.4	. 4997	. 4997	.4997	. 4997	. 4997	.4997	. 4997	. 4997	. 4997	. 4998
3.5	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	.4998
3.6	. 4998	. 4998	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999
3.7	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999
3.8	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999
3.9	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000

Appendix D

> Percentile Values (t_{p})
> for
> Student's t Distribution with v Degrees of Freedom

ν	$t_{.53}$	$t_{.60}$	$t_{.70}$	$t_{.75}$	$t_{.80}$	$t_{.90}$	$t_{.95}$	$t_{.975}$	$t_{.99}$	$t_{.995}$
1	.158	.325	.727	1.000	1.376	3.08	6.31	12.71	31.82	63.66
2	.142	.289	.617	.816	1.061	1.89	2.92	4.30	6.96	9.92
3	.137	.277	.584	.765	.978	1.64	2.35	3.18	4.54	5.84
4	.134	.271	.569	.741	.941	1.53	2.13	2.78	3.75	4.60
5	.132	.267	.559	.727	.920	1.48	2.02	2.57	3.36	4.03
6	.131	.265	.553	.718	.906	1.44	1.94	2.45	3.14	3.71
7	.130	.263	.549	.711	.896	1.42	1.90	2.36	3.00	3.50
8	.130	.262	.546	.706	.889	1.40	1.86	2.31	2.90	3.36
9	.129	.261	.543	.703	.883	1.38	1.83	2.26	2.82	3.25
10	.129	.260	.542	.700	.879	1.37	1.81	2.23	2.76	3.17
11	.129	.260	.540	.697	.876	1.36	1.80	2.20	2.72	3.11
12	.128	.259	.539	.695	.873	1.36	1.78	2.18	2.68	3.06
13	.128	.259	.538	.694	.870	1.35	1.77	2.16	2.65	3.01
14	.128	.258	.537	.692	.868	1.34	1.76	2.14	2.62	2.98
15	.128	.258	.536	.691	.866	1.34	1.75	2.13	2.60	2.95
16	.128	.258	.535	.690	.865	1.34	1.75	2.12	2.58	2.92
17	.128	.257	.534	.689	.863	1.33	1.74	2.11	2.57	2.90
18	.127	.257	.534	.688	.862	1.33	1.73	2.10	2.55	2.88
19	.127	.257	.533	.688	.861	1.33	1.73	2.09	2.54	2.86
20	.127	.257	.533	.687	.860	1.32	1.72	2.09	2.53	2.84
21	.127	.257	.532	.686	.859	1.32	1.72	2.08	2.52	2.83
22	.127	.256	.532	.686	.858	1.32	1.72	2.07	2.51	2.82
23	.127	.256	.532	.685	.858	1.32	1.71	2.07	2.50	2.81
24	.127	.256	.531	.685	.857	1.32	1.71	2.06	2.49	2.80
25	.127	.256	.531	.684	.856	1.32	1.71	2.06	2.48	2.79
26	.127	.256	.531	.684	.856	1.32	1.71	2.06	2.48	2.78
27	.127	.256	.531	.684	.855	1.31	1.70	2.05	2.47	2.77
28	.127	.256	.530	.683	.855	1.31	1.70	2.05	2.47	2.76
29	.127	.256	.530	.683	.854	1.31	1.70	2.04	2.40	2.76
30	.127	.256	.530	.683	.854	1.31	1.70	2.04	2.46	2.75
40	.126	.255	.529	.681	.851	1.30	1.68	2.02	2.42	2.70
60	.126	.254	.527	.679	.848	1.30	1.67	2.00	2.39	2.66
120	.126	.254	.526	.677	.845	1.29	1.66	1.98	2.36	2.62
∞	.126	.253	.524	.674	.842	1.28	1.645	1.96	2.33	2.58

Source: R. A. Fisher and F. Yates, Statistical T'ables for Biological, Agricultural and Medical Research, published by Longman Group Ltd., London (previously published by Oliver and Boyd, Edinburgh), and by permission of the authors and publishers.

Appendix E

> Percentile Values (χ_{p}^{2}) for the
> Chi-Square Distribution with :Degrees of Freedom

ν	$\chi_{\text {doas }}^{2}$	$\chi^{2} .01$	$x^{2} .025$.	$\chi_{\text {x }}^{2}$.	χ_{10}^{2}	$x_{.25}^{2}$	$\chi_{\text {. }}^{2}$ 20	$x_{.75}^{2}$	$\chi_{.90}^{2}$	$\chi_{.95}^{2}$	$\chi_{.975}^{2}$	$\chi^{2} .99$	$\mathrm{X}^{2} .995$	$\chi_{.989}^{2}$
1	. 0000	. 0002	. 0010	. 0039	. 0158	. 102	. 455	1.32	2.71	3.84	5.02	6.63	7.88	10.8
2	. 0100	. 0201	. 0506	. 103	. 211	. 575	1.39	2.77	4.61	5.99	7.38	9.21	10.6	13.8
3	. 0717	. 115	. 216	. 352	. 584	1.21	2.37	4.11	6.25	7.81	9.35	11.3	12.8	16.3
4	. 207	. 297	. 484	. 711	1.06	1.92	3.36	5.39	7.78	9.49	11.1	13.3	14.9	18.5
5	. 412	. 554	. 831	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.7	20.5
6	. 676	. 872	1.24	1.64	2.20	3.45	5.35	7.84	10.6	12.6	14.4	16.8	18.5	22.5
7	. 989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.0	14.1	16.0	18.5	20.3	24.3
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22.0	26.1
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.4	14.7	16.9	19.0	21.7	23.6	27.9
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.5	16.0	18.3	20.5	23.2	25.2	29.6
11	2.60	3.05	3.82	4.57	5.58	7.58	10.3	13.7	17.3	19.7	21.9	24.7	26.8	31.3
12	3.07	3.57	4.40	5.23	6.30	8.44	11.3	14.8	18.5	21.0	23.3	26.2	28.3	32.9
13	3.57	4.11	5.01	5.89	7.04	9.30	12.3	16.0	19.8	22.4	24.7	27.7	29.8	34.5
14	4.07	4.66	5.63	6.57	7.79	10.2	13.3	17.1	21.1	23.7	26.1	29.1	31.3	36.1
15	4.60	5.23	6.26	7.26	8.55	11.0	14.3	18.2	22.3	25.0	27.5	30.6	32.8	37.7
16	5.14	5.81	6.91	7.96	9.31	11.9	15.3	19.4	23.5	26.3	28.8	32.0	34.3	39.3
17	5.70	6.41	7.56	8.67	10.1	12.8	16.3	20.5	24.8	27.6	30.2	33.4	35.7	40.8
18	6.26	7.01	8.23	9.39	10.9	13.7	17.3	21.6	26.0	28.9	31.5	34.8	37.2	42.3
19	6.84	7.63	8.91	10.1	11.7	14.6	18.3	22.7	27.2	30.1	32.9	36.2	38.6	43.8
20	7.43	8.26	9.59	10.9	12.4	15.5	19.3	23.8	28.4	31.4	34.2	37.6	40.0	45.3
21	8.03	8.90	10.3	11.6	13.2	16.3	20.3	24.9	29.6	32.7	35.5	38.9	41.4	46.8
22	8.64	9.54	11.0	12.3	14.0	17.2	21.3	26.0	30.8	33.9	36.8	40.3	42.8	48.3
23	9.26	10.2	11.7	13.1	14.8	18.1	22.3	27.1	32.0	35.2	38.1	41.6	44.2	49.7
24	9.89	10.9	12.4	13.8	15.7	19.0	23.3	28.2	33.2	36.4	39.4	43.0	45.6	51.2
25	10.5	11.5	13.1	14.6	16.5	19.9	24.3	29.3	34.4	37.7	40.6	44.3	46.9	52.6
26	11.2	12.2	13.8	15.4	17.3	20.8	25.3	30.4	35.6	38.9	41.9	45.6	48.3	54.1
27	11.8	12.9	14.6	16.2	18.1	21.7	26.3	31.5	36.7	40.1	43.2	47.0	49.6	55.5
28	12.5	13.6	15.3	16.9	18.9	22.7	27.3	32.6	37.9	41.3	44.5	48.3	51.0	56.9
29	13.1	14.3	16.0	17.7	19.8	23.6	28.3	33.7	39.1	42.6	45.7	49.6	52.3	58.3
30	13.8	15.0	16.8	18.5	20.6	24.5	29.3	34.8	40.3	43.8	47.0	50.9	53.7	59.7
40	20.7	22.2	24.4	26.5	29.1	33.7	39.3	45.6	51.8	55.8	59.3	63.7	66.8	73.4
50	28.0	29.7	32.4	34.8	37.7	42.9	49.3	56.3	63.2	67.5	71.4	76.2	79.5	86.7
60	35.5	37.5	40.5	43.2	46.5	52.3	59.3	67.0	74.4	79.1	83.3	88.4	92.0	99.6
70	43.3	45.4	48.8	51.7	55.3	61.7	69.3	77.6	85.5	90.5	95.0	100	104	112
80	51.2	53.5	57.2	60.4	64.3	71.1	79.3	88.1	96.6	102	107	112	116	125
90	59.2	61.8	65.6	69.1	73.3	80.6	89.3	98.6	108	113	118	124	128	137
100	67.3	70.1	74.2	77.9	82.4	90.1	99.3	109	118	124	130	136	140	149

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 1 (1966), Table 8, pages 137 and 138, by permission

Appendix F

95th Percentile Values (0.05 Levels), $F_{\text {.ss }}$, for the F Distribution
v_{1} degrees of freedom in numerator
v_{2} degrees of freedom in denominator

ν_{2}	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	
2	18	19.0	19.2	19.2	19.3	19	19.4	19.4	19	19.4	19.4	19.4	19.4	19.5	9.	19.5	19.5	19.5	
3	10.	9.5	9.28	9.12	9.0	8.94	8.89	8.8	8.81	8.79	8.74	8.70	66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.7	6.94	6.5	6.3	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.8	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.8	3.77	3.74	3.70	3.67
7	5.5	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.3	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.5	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.0	3.01	2.9	2.93
9	5.1	4.26	3.8	3.63	3.48	3.3	3.29	3.23	3.18	3.14	3.07	3.01	94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.1	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	61	2.57	2.53	2.49	2.45	2.40
12	4.	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	34	2.30	2.25	2.21
14	4.6	3.74	3.34	3.11	2.96	2.85	2.76	70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.5	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.6	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.2	24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.5	3.2	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.3	2.23	2.19	2.1	2.10	2.06	2.01	
18	4.41	3.55	3.16	2.9	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11		2.02	1.97	
19	4.38	3.52	3.1	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98		
20	4.35	3.49	3.10	2.87	2.71	2.6	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	
21	4.32	3.47	3.07	2.8	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.0	1.96	1.92		
22	4.30	3.44	3.05	2.82	2.66	2.5	2.46	2.40	2.34	2.3	2.23	2.15	2.07	2.03	1.98	94	1.89	1.84	1.78
23	4.2	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	
25	4.24	3.3	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.3	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.5	2.46	2.3	2.31	2.25	2.20	2.13	2.06	1.9	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.9	1.9	1.8	1.82	1.77	1.71	1.65
29	4.1	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.8	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.1	2.09	2.0	1.93	1.89	1.84	1.79	1.74		1.62
40	4.0	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.7	1.7	1.6	1.6		1.51
60	4.0	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.5	1.6		1.39
120	3.	3.0	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.6	1.61	1.55	1.5	. 4		1.26
∞	3.8	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32		

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 178, by permission.

